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Abstract

A lift based wave energy converter, namely, a cycloidal turbine, is investigated. This type of wave energy converter
consists of a shaft with one or more hydrofoils attached eccentrically at a radius. The main shaft is aligned parallel
to the wave crests and submerged at a fixed depth. In the two-dimensional limit, i.e. for large spans of the hydrofoil
(or an array of these), the geometry of the converter is suitable for wave termination of straight crested Airy waves.
Results from two-dimensional potential flow simulations, with thin hydrofoils modeled as either a point vortex or
discrete vortex panel, are presented. The operation of the cycloidal turbine both as a wave generator as well as a
wave-to-shaft energy converter interacting with a linear Airy wave is demonstrated. The impact on the performance
of the converter for design parameters such as device size, submergence depth, and number of hydrofoils is shown. For
optimal parameter choices, simulation results demonstrate inviscid energy conversion efficiencies of more than 99%
of the incoming wave energy to shaft energy. This is achieved using feedback control to synchronize the rotational
rate, blade pitch angle, and phase of the cycloidal wave energy converter to the incoming wave. While complete
termination of the incoming wave is shown, the remainder of the energy is lost to harmonic waves travelling in the
up–wave and down–wave directions.
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1. Introduction

Among alternative energy sources, wave power is one of the most abundant sources on earth. The World Energy
Council, according to Boyle [1], has estimated the world wide annual amount of wave power energy at 17.5 PWh (Peta
Watt hours = 1012kWh). This is comparable to annual world wide electric energy consumption, which is currently
estimated at 16 PWh. Thus, wave power has the potential to provide a large portion of the worlds electric energy
needs if it can be tapped efficiently. Other advantages of wave power include its power density, predictability, and
location. While the power density of both solar and wind in typical favorable sites is in the order of 1kWm−2 according
to Bedart [2], wave power in a typical North Atlantic wave as considered in this paper (wave height of H = 3.5m and
period of T = 9s) yields 108kWm−1 of wave crest. As will be shown, a device extending about 40m in the vertical
direction can extract almost all of this wave power, yielding a power density of about 2.7kWm−2 or more than twice
that of wind or solar power. If one considers the theoretical inviscid conversion limits for waves and wind, which are
100% for waves (Evans [3]) and 59% for wind (Betz [4]), the accessible power densities of waves and wind differ by
a factor of more than 4. Furthermore, wave energy is available on a more consistent basis and can be better predicted
in advance, reducing the need for conventional back up power sources. Finally, since a large portion of the world’s
population lives close to ocean shores, the distance between energy production and consumption is small, reducing
transmission losses. Thus, wave power is an ideal energy source for efficiently providing renewable energy to densely
populated coastal areas.

Given the attractive features of wave energy as an alternative energy source, it has received significant attention in
the scientific community over time. While a comprehensive review of all relevant publications would be prohibitively
long, the reader is instead referred to comprehensive reviews published by McCormick [5], Mei [6] or, most recently,
Cruz [7]. The following discussion will instead focus only on select sources most pertinent to the current work.

Rrelatively few publications investigate the interaction of hydrofoils with surface waves for the purpose of wave
energy conversion. Wu [8] analyzed the interaction of an oscillating hydrofoil with waves. He identified by means of
variational calculus optimal oscillating parameters and reported that a net energy gain can be obtained. Grue et al. [9]
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Figure 1: Cycloidal wave energy converter geometry

explored the possibility of using energy recovered from waves using an oscillating hydrofoil as a means of propulsion
for a vessel. They investigated the possible parameter space in detail using linearized potential flow simulations, and
found that, in particular for waves traveling in the opposite direction of the vessel, a large amount of propulsion energy
can be extracted from the waves. This concept was further pursued by Isshiki [10], Isshiki and Murakami [11], and
Isshiki et al. [12], resulting in a vessel crossing the Pacific ocean from Japan to the island of Hawaii entirely powered
by wave energy (Terao [13]).

More specifically for the application of alternative energy, initial investigations of lift based wave energy conver-
sion by means of a single hydrofoil were performed at TU Delft as early as the 1990s, both experimentally by Marburg
[14] and numerically by van Sabben [15]. As noted by Hermans et al. [16], a major advantage of this approach over
traditional wave energy converters is that the wave energy can be converted directly into rotational mechanical en-
ergy. This initial work demonstrated the feasibility of the approach, as well as the ability of a cycloidal wave energy
converter (WEC) to self-synchronize with the incoming wave in terms of rotational phase. However, the conversion
efficiencies found both in the theoretical work and the wave tunnel experiments conducted at TU Delft were very
small, on the order of few percent in experiments, with a theoretical maximum of 15%. Pinkster and A.J.Hermans
[17] also demonstrated the use of a cycloidal propeller as a means of detecting wave direction and period with good
accuracy.

The aim of the present work is to extend the numerical work of Hermans et al. [16] and Pinkster and A.J.Hermans
[17] to investigate the performance improvements of a cycloidal WEC that operates at significantly higher blade
speeds then the wave–induced velocity. The impact of all geometric design parameters in terms of the far field
wave generation and cancellation is explored. Near field investigations are used to investigate the impact of different
blade pitch control schemes as well as hydrofoil chord length on energy conversion efficiency. Additional efficiency
improvements using a multi-bladed converter with positive harmonic wave interactions is also investigated.

1.1. Wave energy converter geometry

A typical cycloidal WEC, as considered in this paper, is shown in figure 1. It features one or more hydrofoils
attached parallel to a horizontally oriented main shaft at a radius R, rotating clockwise at angular speed ω, and
submerged a depth yc, which is measured relative to a Cartesian coordinate system with y = 0 being the undisturbed
free surface. The hydrofoils in the 2D simulations in this paper are assumed to have infinite span in the third dimension,
which in real life can be approximated by having a large aspect ratio, which is the ratio between chord length and span.
They are also assumed to be aligned parallel with the incident wave crests. The orientation (pitch) of each hydrofoil
may be adjusted to produce the desired level of circulation Γ. At any point on the free surface the vertical elevation is
η and peak-to-peak amplitude of the resulting wave field is H. The incoming ocean wave WAiry, is assumed to travel
left to right, and waves generated by the cycloidal WEC traveling in the direction of the incoming wave receive a
positive index (e.g., W1) and are considered traveling down-wave; while waves traveling in the opposite direction are
considered traveling up-wave and receive a negative index (e.g., W−1).
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2. Potential Flow Model

Since a typical wave–induced flow field is well described by potential flow theory, see for example Newman [18],
a logical starting point to investigate the wave making and cancellation properties of a cycloidal WEC is to seek
a potential flow solution. For an inviscid, incompressible, and irrotational flow, the governing continuity equation
simplifies to the Laplace equation,

∇2Φ = 0 (1)

whereΦ is the velocity potential. Unique solutions to equation 1 are determined by satisfying the appropriate boundary
conditions based on physical considerations. In seeking two-dimensional solutions it is often convenient to define the
complex stream function in terms of the complex coordinate z = x + iy,

F(z, t) = Φ + iΨ (2)

where Ψ the stream function and the complex velocity is defined by dF/dz = u − iv.

2.1. Point vortex model

The simplest representation of a two-dimensional hydrofoil correctly representing the flow induced in the far field
is a point vortex of strength Γ equal to the foil circulation. If the vortex is in the presence of a free surface it is
imperative that appropriate physical boundary conditions be satisfied on the free surface. Derivations of the linearized
free surface boundary condition can be found, for example, in Newman [18]. Neglecting higher order terms, the
kinematic boundary condition ensuring the vertical velocity of the free surface and the fluid are equal is,

∂η

∂t
=
∂Φ

∂y
. (3)

The dynamic boundary condition ensuring the pressure on the free surface is atmospheric is determined from Bernoulli’s
equation. Substituting the free surface elevation for y, and again neglecting higher order terms results in,

η = −1/g
∂Φ

∂t
, (4)

where g = 9.81ms−2 is the gravity constant. Due to the linearization, equation 4 can be imposed at y = 0. At the
up–wave and down–wave integration boundaries, the waves within the domain are allowed to leave the domain freely
using a non-reflective boundary condition.

Subject to the above boundary condition, the complex potential for a vortex moving under a free surface with
position c(t) = x(t) + iy(t) in the complex plane is developed in Wehausen and Laitone [19] to be,

F(z, t) =
Γ(t)
2πi

ln

(
z − c(t)
z − c̄(t)

)

+
g
πi

∫ t

0

∫ ∞

0

Γ(τ)√
gk

e−ik(z−c̄(τ))

× sin
[ √

gk(t − τ)
]
dkdτ (5)

with Γ(t) the circulation of the vortex, and k the wave number. Equation 5 satisfies both the kinematic and dynamic
free surface boundary conditions at y = 0. The first term is the complex potential due to the vortex and its mirror image
above the surface, which is necessary to satisfy the kinematic free surface condition. The second term describes the
radiated waves related to the dynamic free surface condition. It is also important to note that in equation 5 the fluid is
assumed to be infinitely deep. While the circulation Γ(t) can be described in a time dependent fashion, it constitutes a
numerical model of limited capabilities in terms of correctly representing an unsteady hydrofoil of time varying angle
of attack. This is because an actual hydrofoil would shed vorticity into its wake of an amount equal to the change in
circulation, and this is not accounted for in equation 5.

3



In previous work by Hermans et al. [16] and Pinkster and A.J.Hermans [17] a hydrofoil under a free surface
was modeled by numerically integrating equation 5 and the results were compared to steady flow experiments with
good agreement. A similar approach is employed in the current work and equation 5 is integrated using second order
time and wave number marching techniques. Subsequently, equation 4 is used to determine the resulting surface
elevation and wave pattern. Using superposition, this approach is further extended to a WEC with multiple hydrofoils,
where the complex potential of each hydrofoil is represented by equation 5. The total potential is determined from
Φtotal =

∑n
i=1Φi, where n is the total number of hydrofoils.

For all single vortex simulations the position of the vortex is prescribed as a function of time. The coordinates for
the vortex moving about the center of rotation (0, yc) with radius R and frequency ω are,

x(t) = R cos(ωt + θ)

y(t) = yc − R sin(ωt + θ). (6)

Thus, the motion of the converter starts with the first (or sole) blade being in the most down–wave position, and
rotation is in the clockwise direction as shown in figure 1. The WEC is assumed synchronized with the incoming
Airy wave such that ω = ωAiry. An arbitrary phase shift θ is introduced, which indicates the relative phase between an
incoming wave and the cycloidal WEC motion.

2.2. Thin hydrofoil model

The singularity of a single point vortex does not represent a hydrofoil well in the near field, and therefore it is
impossible to determine important near–field quantities like angle of attack using the approach outlilned in Section
2.1. In order to analyze the near–field, one must resort to a thin hydrofoil panel representation.

The vortex panel representation employed follows the algorithm for an unsteady thin airfoil using the lumped–
vortex element method described by Katz and Plotkin [20] chapter 13.10 with modifications to account for the free
surface. The governing continuity equation for the incompressible unsteady flow field in a body-fixed coordinate
system is still represented by equation 1 at any point in time. Thus, a time-marching scheme can be implemented with
unsteadiness entering the problem via the hydrofoil surface boundary condition and wake.

The hydrofoil is divided into a finite number of panels and a discrete vortex is located at the quarter chord of
each panel. A Neumann boundary condition satisfying no flow penetration through the hydrofoil surface is satisfied
at three-quarters chord of each panel, according to,

(∇ΦB + ∇ΦW + ∇ΦAiry − V0 −Ω × r) · n = 0 (7)

whereΦB is the self-induced perturbation potential,ΦW is the wake potential,ΦAiry is the potential due to the incoming
Airy wave, V0 is the velocity of the body-fixed origin, r is the body-fixed position vector, andΩ is the rate of rotation
in the body fixed coordinate system. Each discrete vortex represented in ΦB and ΦW is modeled using equation 5,
ensuring that the free surface boundary conditions of equation 3 and 4 are satisfied. Note that for the discrete vortex
model the instantaneous Kutta condition is satisfied implicitly.

At each time step a discrete vortex is added to the hydrofoil wake such that Kelvin’s condition is satisfied. As
recommended by Katz and Plotkin [20], the vortex is placed along the path of the hydrofoil’s trailing edge at approx-
imately 0.25l from the trail edge, where l is the distance travel within the time step. Each wake vortex is considered
force free and within each time step is convected by the local velocity, which includes velocity components induced
by the wake, hydrofoil, and incoming Airy wave. No dissipation of vorticity over time was considered, and there was
no need to implement any vortex core models as the integration scheme proved stable without them.

The hydrofoil motion is prescribed as a function of time, with the trajectory of the body-fixed fixed coordinate
system located at the hydrofoil nose defined by equation 6. The hydrofoil is also free to pitch about the body-fixed
orgin by an angle α, which is either prescribed or determined iteratively at each time step such that a specified
circulation is achieved.
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2.3. Incoming Airy Wave
Linear Airy wave theory is used to investigate the interaction of the cycloidal WEC and the incoming wave. The

velocity potential for a progressive linear deep ocean wave satisfying the linearized free surface boundary conditions
is given in Newman [18] to be,

ΦAiry(x, y, t) =
Hg
2ω

ekysin (kx − ωt) (8)

where H is the peak-to-peak wave amplitude, ω is the wave frequency and k is the wave number. Superposition is
again utilized to determine the total velocity potential.

Airy wave theory can also be used to describe the phase speed C, group velocity Cg, wavelength λAiry, and wave
period T such that,

C = g
TAiry

2π
Cg = C/2

λAiry = C TAiry. (9)

Typically, the WEC will create more than a single plain traveling wave. The wave height of each generated wave
component can be determined by Fourier analysis. Throughout this paper indices are used to identify the harmonic
wave components and their traveling direction. As shown in figure 1, waves traveling left or in the up–wave direction
receive negative indices, while down–wave traveling waves receive positive indices. It is possible to determine the
power associated with each wave Pn by employing Airy wave theory which relates wave power per unit length to
wave height and period by:

Pn =
1
8
ρ g H2

n Cg

=
1

32π
ρg2H2

nTn (10)

where ρ = 1000 kgm−3 is the density of water. Since the wave power scales linearly with the wave period T , higher
harmonic waves of the same wave height will contain less energy in proportion to their period. Also to be noted is a
quadratic relationship between wave energy and wave height H. Based on wave power, the figure of merit for WEC
design becomes the ratio of the power in the (desired) fundamental wave traveling down–wave, P1, compared to the
power contained in all waves,

P1/Pall =
P1∑∞

n=−∞ Pn
. (11)

The power ratio will reach a value of one if only the desired down–wave traveling fundamental wave is created,
and zero if no down–wave traveling fundamental wave is produced. The wave power analysis is based on energy
conservation which is implicit in the unsteady Bernoulli equation, and a control volume analysis assuming that all
energy leaving or entering at the up–wave and down–wave boundaries is contained in traveling Airy type waves.
Thus, the power difference at both boundaries is to be provided or absorbed by the traveling point vortex/vortices.

3. Results

While the actual ocean environment typically consists of waves with several different periods and wave heights
superimposed, in this initial investigation a sinusoidal, plain Airy wave is assumed. According to Boyle [1], the
North Atlantic often features waves with a period of T = 9s and wave length λAiry = 126.5m (asuming Linear Airy
wave theory). Based on the sketch in figure 1 and the incident Airy wave, a number of non dimensional quantities
emerge. The basic size of the WEC is denoted by 2R/λAiry, depth of submergence by |yc|/λAiry, hydrofoil chord by
c/λAiry and wave height by H/λAiry. It is also convenient for parameter studies to compare different–sized WECs
while keeping the distance between the water surface and the upper point of the cycloidal WEC trajectory fixed, that
is |yc + R|/λAiry = const.
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Figure 2: L2 Error Norm as a function of time step discretization for Δk/kAiry = 31.6 and kmax/kAiry = 75.9.

3.1. Convergence study

It is imperative to ensure that the time step and wave number integration settings are such that the numerical
solution sufficiently converges. Resulting wave patterns for single vortex simulations were investigated as a function
of Δt , Δk, and kmax to determine appropriate values for each variable. Figure 2 presents the L2 error, normalized by
the largest down–wave surface elevation ηmax. Results are shown for fixed axial locations x/λAiry = −8, −1, 1, and 8.
The effect of varying Δt is shown for constant Δk/k = 31.6 and kmax/k = 75.9. These plots show a decreasing error as
Δt decreases; also, the errors are larger close to the cycloidal turbine, indicating the need for increased time resolution
in this region.

Similar investigations were conducted for the wave number increment Δk, and maximum resolved wave number
kmax. Based on these results it was concluded that the required resolutions for numerical convergence are T/Δt = 36,
k/Δk = 31.6, and kmax/k = 75.9. The results obtained with these integration parameters were compared to a simulation
with T/Δt = 72, k/Δk = 63.2, and kmax/k = 151.8 and both simulations predicted nearly identical wave patterns,
indicating that the chosen settings are sufficient. These values were employed for all simulations presented, including
the thin hydrofoil simulations. Further verification was performed by comparing data presented by Marburg [14]
using the same simulation parameters, and identical results were obtained. As a sources of validation, Marburg
[14] compared single vortex simulation results to wave tunnel experiments conducted at TU Delft and found good
agreement.

3.2. Point vortex model results

Far field results are presented for simulations with each hydrofoil modeled as a point vortex using the complex
potential given in equation 5.

3.2.1. Single blade wave energy converter
Results from single vortex simulations, representing a single bladed cycloidal WEC, are presented in this section.

The goal of these simulations is to investigate the nature of the waves generated by the cycloidal WEC and to determine
optimal values for radius R, centroid location beneath the water surface yc, and circulation Γ. The optimal wave pattern
generated by the WEC is one with a fundamental wave traveling down–wave equal in amplitude (but of opposite phase)
with the incoming Airy wave, and no higher harmonic waves traveling in the up– or down–wave directions.

Plotted in figure 3 is a typical resulting wave pattern as a function of time. The size of the WEC is 2R/λAiry = 0.3
and submergence depth is |yc|/λAiry = 0.18, which (as will be shown in a subsequent section) avoids generating ex-
cessively large harmonic waves. It can be seen that the dominant wave amplitudes occur in the down–wave direction,
while the up–wave amplitudes are small. After several rotations of the WEC the flow becomes periodic in time and
space. However, beyond the fundamental frequency there are higher harmonic waves generated, as is evident in the
disruption of the wave ridges traveling down–wave.
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Figure 3: Water surface–time plot for wave generation by a single vortex cycloidal WEC with device size 2R/λAiry =

0.3, submergence depth |yc|/λAiry = 0.18, and circulation ΓT/λ2
Airy = 5.6×10−3. The converter is located at x/λAiry = 0

and rotation is started at t/T = 0.
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Figure 4: Surface elevation (left) and power spectral density (right) for a cycloidal WEC of size 2R/λAiry = 0.3,
submergence depth |yc|/λAiry = 0.18, and circulation ΓT/λ2

Airy = 5.6 × 10−3. All waves are evaluated at x = ±3λAiry

and time t/T = 30 after the start of the cycloidal WEC.
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Figure 5: Wave height(top) and Power(bottom) as a function of device size for a minimum submergence |yc+R|/λAiry =

0.015 and circulation ΓT/λ2
Airy = 5.6× 10−3. All waves are evaluated at x = ±3λAiry and t/T = 30 after the start of the

cycloidal WEC.

The time signal and power spectral density (PSD) for the resulting wave field at x = ±3λAiry is shown in figure 4,
where T is the WEC period and TW is the period of each generated wave. The amplitude of the fundamental wave of
period Tw/T = 1 is the most dominant peak in the PSD plot. The down–wave flow field also features a peak of about
half the magnitude of the fundamental wave at Tw/T = 0.5, which is responsible for the disruption in the wave ridges
shown in figure 3. To evaluate the performance of the cycloidal WECs, the fundamental and harmonic wave heights
determined from the PSD analysis are used.

To determine the effect of varying the cycloidal WEC radius on the resulting wave patterns, simulations were
completed with constant circulation ΓT/λ2

Airy = 5.6 × 10−3, and minimum submergence |yc + R|/λAiry = 0.015. These
results are shown in figure 5, where H1,2,3 and H−1,−2,−3 are the wave heights of the fundamental and next two harmonic
waves traveling in the down and up–wave directions respectively. Waves amplitudes are based on PSD analysis at
x = ±3λAiry, initiated at t/T = 30 aft the start of the WEC. Also shown is the corresponding power for each wave
P1,2,3,−1,−2,−3, which have been normalized by the maximum power of the down-wave traveling fundamental wave,
P1max. Inspection of the down–wave traveling wave heights reveals maxima for all three waves when the hydrofoil
speed and resulting wave speed are equal (i.e., ωR = C assuming Airy wave theory). For the fundamental wave this
corresponds with 2R/λAiry = 1/π, which is the optimal device size for wave generation. It is also important to note that
the amplitude of the second and third harmonic waves is significant with maximum values similar to the fundamental
harmonic. As a result, the optimal efficiency does not coincide with the optimal device size for wave generation and
has a relatively limited bandwith with power ratios near unity for 0.5 ≤ 2R/λAiry ≤ 0.75.

To determine the effect of submergence depth on the resulting wave field, the previous analysis was repeated for
a constant device size of 2R/λAiry = 0.30 and circulation ΓT/λ2

Airy = 5.6 × 10−3, with varying submergence depth
|yc|/λAiry. Resulting wave amplitudes and corresponding power are shown in figure 6. All down-wave traveling waves
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Figure 6: Wave height(left) and Power(right) as a function of submergence depth |yc|/λAiry for a device size 2R/λ =
0.30 and circulation ΓT/λ2

Airy = 5.6×10−3. All waves are evaluated at ±3λ and t/T = 30 after the start of the cycloidal
WEC.
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Figure 7: Wave heights as a function of circulation Γ.

show decreasing amplitudes with increasing submergence depth. But importantly, the second and third harmonic
down-wave amplitudes decrease at much faster rates then the fundamental harmonic. As a consequence, the power
ratio improves with increasing submergence depth and asymptotically reaches a value of one at |yc|/λ ≥ 0.255.
However, for this submergence the fundamental down-wave amplitude has decreased by more than 40% and the
correspond power has decreased by approximately 65%.

The prescribed circulation affects the necessary hydrofoil size and/or angle of attack. The previous results were
obtained for a constant vortex circulation of ΓT/λ2

Airy = 5.6 × 10−3, and the influence of varying Γ on the resulting
wave amplitudes is shown in figure 7. Resulting wave heights scale linearly with Γ and this applies equally to all
waves generated. This behavior is expected based on inspection of the governing equation 5, but has important
implications for wave cancellation. Since a linear change in circulation causes a linear change in wave amplitude, the
wave energy converter can be easily adjusted to different wave heights by changing the circulation. Physically, this
can be accomplished by adjusting the hydrofoil pitch and will not cause any change in conversion efficiency because
all waves are scaled equally.

While the results presented so far clearly demonstrate the feasibility of using a cycloidal turbine to create a single–
direction traveling wave suitable for wave cancellation, the optimal design size determined by the bandwidth of the
peak power ratio poses real world engineering problems when canceling deep ocean waves with wave lengths on
the order of 100 m. This design challenge is addressed by improving the power ratio for smaller device sizes by
considering a WEC with multiple hydrofoils.
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3.2.2. Multi-blade wave energy converter
Using the theory of superposition is it possible to represent a multi-bladed cycloidal WEC. Results are shown

in this section for simulations with two vortices (each representing an individual hydrofoil) of equal but opposite
circulation and spaced 180◦ apart. The exact configuration is shown in the sketch of figure 1.

Plotted in figure 8 are the resulting wave patterns at x = 3λAiry for a muti-blade WEC with a device size 2R/λAiry =

0.3, submergence depth |yc|/λAiry = 0.18 and circulation ΓT/λ2
Airy = ±5.6 × 10−3. The fundamental wave amplitudes

from each vortex combine to produce a wave with twice the amplitude of each vortex separately. More importantly,
the second harmonic waves from each vortex cancel. Inspection of the phase spectra (not shown) indicates that these
waves are exactly out of phase; consequently, no second harmonic waves are present in total wave field.

The impact of the two-blade arrangement on the power ratio and generated wave heights as a function of device
size is shown in figure 9. The power ratio distribution is now near unity for device sizes ranging from 0.2 ≤ 2R/λAiry ≤
1.0. For example, at 2R/λAiry = 0.20 the power ratio has been increased from 0.60 for the single blade arrangement
with similar input parameters (i.e., figure 5) to 0.94 for the two-blade arrangement.

The results presented in figure 9 can also be used to determine the range of wave lengths or, conversely, wave
periods for which a wave energy converter of a fixed size is able to interact efficiently with incoming waves. Since
the power ratio is now flat and close to unity for device size ranging from 0.2 ≤ 2R/λ ≤ 1.0, one could, for example,
design a WEC of this type to efficiently interact with waves that differ in wave length by approximately a factor of
five. For example, a WEC with R = 20m can efficiently interact with wave lengths between 40m ≤ λ ≤ 200m, which
is typical of deep ocean waves. While the WEC will still be able to extract a portion of the energy for waves outside
of this design range, the efficiency will be reduced. This dynamic range should suffice for most wave climates found
in actual deep ocean settings, negating the need to design a WEC with a variable radius which, while feasible, would
add complexity to the design.

Figure 10 shows the resulting wave heights and the corresponding wave power as a function of submergence depth
for the fundamental and harmonic waves traveling in both the up and down–wave directions. While the decrease in
fundamental wave amplitude is similar to that observed in the single vortex case shown in figure 6, the power ratio
is now flat and close to unity for all submergence depths. This is due to the lack of any significant harmonic waves
traveling in either direction; the only harmonic of detectable amplitude is the wave H3, which does not carry any
significant energy. Most notable is the absence of the second harmonic wave H2.

3.2.3. Wave cancellation
Superposition is used to investigate the interaction between a multi–blade WEC and an incoming Airy wave. To

achieve wave cancellation, the wave generated by the WEC needs to match the incoming wave amplitude and period,
while being exactly out of phase. The following linear feedback laws achieve this:
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Figure 9: Wave height(left) and Power(right) as a function of device size 2R/λAiry for a two-bladed WEC with 180◦
of phase shift with circulation ΓT/λ2

Airy = ±5.6 × 10−3 and minimum submergence |yc + R|/λAiry = 0.015. All waves
are evaluated at x = ±3λAiry at time t/T = 30 after the start of the cycloidal WEC.
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Figure 10: Wave height(left) and Power(right) as a function of submergence depth |yc|/λAiry for a two-bladed WEC
modeled at two point vorticies with 180◦ of phase shift for a device size 2R/λAiry = 0.30 and circulation ΓT/λ2

Airy =

±5.6 × 10−3. All waves are evaluated at x = ±3λAiry at time t/T = 30 after the start of the cycloidal WEC.
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Figure 11: Wave heights vs wave phase for a multi-bladed WEC with device size 2R/λAiry = 0.3, inimum submergence
depth |yc + R|/λAiry = 0.015 and circulation ΓT/λ2

Airy = ±5.6 × 10−3, and an incoming Airy wave with period T = 9s
and wave height HAiry = 1.98m. All waves are evaluated at x = ±3λAiry at time t/T = 30 after the start of the cycloidal
wave energy converter.

δ(t) = ω t + θ

Γ = kΓ HAiry. (12)

where δ(t) is the angle of the cycloidal WEC main shaft, and θ is a constant phase shift between the wave motion and
the WEC rotational angle. The fixed amplitude feedback gain kΓ is adjusted such that the amplitude of the fundamental
wave H1 created by the WEC matches that of the incoming Airy wave exactly.

Results for a WEC of device size 2R/λAiry = 0.3, minimum submergence depth |yc + R|/λAiry = 0.015 and
circulation ΓT/λ2

Airy = ±5.6 × 10−3, interacting with an incoming Airy wave of period T = 9s and wave height
HAiry = 1.98m are shown in figures 11 and 12. The incoming wave height was emperically matched to be equal
to the generated wave height, resulting in kΓ = 5.05. Figure 11 demonstrates the impact of phase shift between the
incoming wave and the WEC rotational angle on the resulting wave field. Wave heights for the fundamental wave
traveling in the up and down-wave directions, H1 and H−1, and the down-wave harmonic H3 are plotted separately
as a function of θ. Note that these are the only waves of any significant amplitude present in the combined wave
field. The optimal phase, θ = 10◦, corresponds to a fundamental down–wave height H1 = 0, indicating that all of
the incoming wave has been canceled by the WEC. The down-wave fundamental amplitude shows a strong linear
relationship for feedback phases above and below the optimal angle, while there there is very little impact on H−1

and H3. Thus, small phase shifts will cause major losses in conversion efficiency making a phase-locked feedback
system mandatory for efficient conversion. The resulting down–wave surface elevation at x = 3λAiry as a function of
time is shown in figure 12 for the optimal feedback phase θ = 10◦. After 15 revolutions of the WEC the fundamental
down-wave amplitude is approximately zero, but higher harmonic waves (most prominently H3) are still present.

3.3. Thin hydrofoil model results

While simulation with hydrofoils modeled as single point vorticies provide far-field estimates of the wave field
created by the cycloidal WEC, a detailed investigation of the flow field near the hydrofoils is not possible. To estimate
near field properties, such as hydrofoil pitch angles and chord length, the hydrofoil must be modeled using a vortex
panel distribution.

3.3.1. Wave generation
An important initial step to validate the thin hydrofoil panel code is to compare far field wave patterns created by

the vortex panel simulations to the results obtained from single vortex simulations. When the hydrofoil chord is small
relative to the fundamental wave length (i.e., c/λAiry << 1), the results from both simulations are identical.

An advantage of the vortex panel simulations is that hydrofoil pitch cycles necessary to obtain the desired cir-
culation can be estimated. Plotted in figure 13 is the resulting pitch cycle for a constant circulation simulation for a
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Figure 12: Surface elevation at x = 3λAiry for a feedback phase of θ = 10◦ between a multi-bladed WEC with device
size 2R/λAiry = 0.3, minimum submergence depth |yc + R|/λAiry = 0.015 and circulation ΓT/λ2

Airy = ±5.6 × 10−3, and
an incoming Airy wave with period T = 9s and wave height HAiry = 1.98m.
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Figure 13: Pitch angle and circulation for thin hydrofoil simulations. The hydrofoil has a chord c/λAiry = 0.03,
device size 2R/λAiry = 0.5, and minimum submergence |yc + R|/λAiry = 0.03. For the constant circulation simulation
ΓT/λ2

Airy = 5.6 × 10−3 and for the constant pitch simulation α = 7.4◦.

hydrofoil with a chord c/λAiry = 0.003, device size 2R/λAiry = 0.5, minimum submergence |yc + R|/λAiry = 0.03, and
circulation ΓT/λ2

Airy = 5.6 × 10−3. The resulting mean pitch angle is α = 7.4◦ with maximum variations over one
cycle of less then ±0.5◦. This indicates that the wave–induced flow direction and magnitude do not vary significantly
as the hydrofoil travels on its circular path. Also plotted in Figure 13 is the circulation variation when the pitch angle
is held constant at α = 7.4◦. The resulting mean circulation is ΓT/λ2

Airy = 5.6 × 10−3 with maximum variations of

±5.6 × 10−4. These circulation fluctuations increase the fundamental wave amplitude traveling up–wave, reducing
the maximum efficiency of the WEC. Thus, precise feed-back pitch control is necessary to achieve maximum WEC
efficiency.

Modeling the cycloidal WEC blades as thin hydrofoils also allows one to investigate the impact of hydrofoil chord
length on the generated wave field. Plotted in Figure 14 is the variation of wave amplitude with hydrofoil chord for a
device size 2R/λAiry = 0.5, minimum submergence |yc+R|/λAiry = 0.03, and constant circulation ΓT/λ2

Airy = 5.6×10−3.
The fundamental down–wave amplitude, H1, increases nonlinearly with increasing hydrofoil chord, while the down–
wave harmonic, H2, and fundamental up–wave harmonic, H−1, remain nearly constant. This increase in wave height
is attributed to the fact that a larger hydrofoil near the surface will more effectively alter the surface elevation and thus
generate a larger wave for a given circulation. This is a general sizing trend that has been observed for pressure force
or buoyancy driven WECs and is reported in literature, see for example Falnes [21]. It also applies to the hydrofoil–
based wave energy conversion, both in terms of the overall converter size investigated in the previous sections, but
also as seen in figure 14 for the hydrofoil chord length.
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Figure 14: Impact of chord length on wave generation. Wave amplitudes are evaluated at x = ±3λAiry for a WEC with
device size 2R/λAiry = 0.5, minimum submergence |yc + R|/λAiry = 0.03, and circulation ΓT/λ2

Airy = 5.6 × 10−3.

3.3.2. Wave cancellation
Linear superposition is again applied to investigate the interactions of the incoming Airy wave and a single blade

WEC modeled as a thin hydrofoil. Plotted in figure 15 is the resulting wave pattern as a function of space and time
for a single blade WEC of size 2R/λAiry = 0.5, minimum submergence |yc + R|/λAiry = 0.03, circulation ΓT/λ2

Airy =

5.6×10−3 and chord c/λ = 0.03, and an incoming Airy wave of period T = 9s and wave height HAiry = 0.8m. Up–wave
of the converter the incoming wave amplitude is unchanged at all times, indicating that no waves of any significant
amplitude were generated by the WEC in the up–wave direction that interfere destructively with the incoming wave.
Down–wave of the converter, the incoming Airy wave is entirely canceled by the WEC’s fundamental harmonic, H1.
However, as expected, because only a single blade converter is considered, higher harmonic waves (most prominently
H2) are still present. Importantly, an investigation of the velocity field in the vicinity of the hydrofoil showed that
the blade inflow velocity remained relatively constant throughout the trajectory. Thus, by operating the cycloidal
WEC in sync with the incoming wave the fluctuating velocity field is rectified to achieve an almost constant inflow
at the blade. From a two-dimensional perspective, the blade experiences both velocity and force components that are
steady in time. Consequently, the torque and shaft power produced are also constant in time, which is an important
consideration for generator design.

3.3.3. Hydrofoil sizing and impact of flow viscosity
The previous section demonstrated that for a typical cycloidal WEC operating at a fixed phase relative to an incom-

ing wave, the wave–induced flow velocity magnitude and direction is relatively constant with respect to the hydrofoil.
This finding is used to develop a first principles estimate of the effect that viscosity has on device performance.

Figure 16 shows the induced velocity components and the resulting hydrodynamic lift and drag forces. The wave–
induced flow velocity UW is assumed have constant magnitude and oriented radially outward as the hydrofoil rotates.
As illustrated in figure 16, the component of lift force tangential to the path of the hydrofoil, LT , is responsible for
the production of torque and thus shaft power, while the tangential drag force, DT , acts to reduce the shaft torque.
Thus the viscous losses can be estimated by the ratio of DT /LT , which is a function of the lift to drag force ratio,
wave velocity UW , and hydrofoil rotational velocity Urot according to, DT/LT = D/L(Urot/UW). It is immediately
evident that as the speed ratio Urot/UW is increased the lift vector becomes more aligned with the radial direction and
thus the tangential component of the lift vector is decreased. In addition, the tangential component of drag increases.
However, for small speed ratios the lift produced is reduced quadratically to the relative flow speed U, even though
the geometric conditions for torque production are improved.

4. Dimensional Results

While the performance of the cycloidal wave energy in non-dimensional quantities was presented throughout this
text, it is helpful to report at least one typical design result in dimensional form. For this we will consider the North
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Figure 15: Water surface—time plot for wave cancellation of an incoming Airy wave with period T = 9s and wave
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Atlantic wave introduced in Section 3 (i.e., T = 9s) with wave height H = 3.5m and energy PAiry = 108kWm−1. For
such an incoming wave the optimal device size is R ≈ 20m, and the incoming wave is entirely canceled using two
hydrofoils each producing a constant circulation of Γ ≈ 17m2/s. Assuming a realistic lift coefficient of cl = 0.75,
a hydrofoil chord of c ≈ 3.25m is required to achieve this circulation. The induced velocity ratio is Urot/UW ≈ 11;
thus, assuming a lift to drag ratio L/D = 40 yields an estimate of the tangential drag to lift ratio, DT /LT ≈ 0.275,
indicating that just under 30% of the wave energy is lost to hydrofoil drag. Consequently, an estimate of the available
shaft power would be Ps ≈ 77kWm−1, and a blade span of only S = 13m would thus yield 1MW of shaft power after
subtracting the visous losses.

5. Conclusions

The well known cycloidal turbine can be used both as an efficient wave maker, as well as a wave termination device
when synchronized to an incoming wave by means of feedback control. Inviscid two-dimensional simulation results
for cycloidal WECs featuring both a single hydrofoil as well as two hydrofoils spaced 180◦ apart are presented. The
hydrofoils of the WEC are modeled either as a point vortex, or as a thin hydrofoil using a vortex panel distribution.
Both simulations capture the waves produced in the far field with good accuracy. However, thin hydrofoil simulations
enable the investigation of necessary pitch control schemes and hydrofoil chord length.

5.1. Wave generation

For wave generation, it is possible to create a single Airy type wave that only travels in one direction, with no wave
being generated in the other direction. The direction of travel is controlled by the rotation direction, while the wave
height varies linearly with hydrofoil circulation. For a single blade WEC the resulting wave field was decomposed into
the fundamental wave traveling up–wave and two higher harmonics traveling both up– and down–wave. The optimal
device radius was determined to be 2R/λAiry = 1/π, corresponding to an exact match between the hydrofoil rotational
velocity and the wave speed of the generated wave. A significant improvement in the wave field was achieved using a
WEC with two hydrofoils spaced 180◦ apart with equal but opposite circulation. For this configuration, the harmonic
wave of twice the fundamental frequency was reduced to negligible amplitudes, resulting in a significantly improved
wave field for wave termination applications.

5.2. Wave cancellation

The single sided wave generated by the cycloidal WEC is perfectly suited to extract energy from an incoming
plane Airy wave. In order to achieve this, the motion of the WEC needs to be synchronized in frequency and phase
locked to the incoming wave, and the circulation of the converter’s hydrofoils needs to be adjusted to produce a wave
of matching amplitude by means of feedback flow control. If this is accomplished, in the two dimensional inviscid
limit, more than 99% of the incoming wave energy can be extracted from the wave achieving wave termination. The
hydrofoil in this situation experiences an almost constant inflow throughout the rotation of the converter, resulting in
a lmost constant torque and thus shaft power. The WEC thus functions as a fluid dynamic rectification device when
considering the moving reference frame of the rotating hydrofoil, while the reactive force at the main shaft is changing
direction through 360 degrees for each revolution.
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